과학인

SCIENTISTS

  •   >  
  • 기초과학인
  •   >  
  • 과학인
이름 김병두  (Kim, Byung Doo)  
소속 경일대학교 자연계열 자율전공학과   
주소 경북 경산시 하양읍 부호리 33
Tel
FAX
On a Finsler space with $(\alpha,\beta)$-metric and certain metrical non-linear connection (Park, Hong-Suh; Park, Ha-Yong) Commun. Korean Math. Soc. (2006), Vol 21, Pages 177–183
Conformal changes of special Finsler spaces with a generalized Cartan connection Publ. Math. Debrecen (2005), Vol 67, Pages 411–418
The $m$-th root Finsler metrics admitting $(\alpha,\beta)$-types (Park, Ha-Yong) Bull. Korean Math. Soc. (2004), Vol 41, Pages 45–52
Two classes of the generalized Randers metric (Choi, Eun-Seo) Int. J. Math. Sci. (2004), Vol 3, Pages 389–398
The Finsler metric satisfying a differential equation (Lee, Il-Yong) Far East J. Math. Sci. (FJMS) (2003), Vol 8, Pages 303–312
Projectively flat Finsler space with an approximate Matsumoto metric (Park, Hong-Suh; Lee, Il-Yong; Park, Ha-Yong) Commun. Korean Math. Soc. (2003), Vol 18, Pages 501–513
Projectively flat Finsler spaces with certain $(\alpha,\beta)$-metrics (Park, Hong-Suh; Park, Ha-Yong; Choi, Eun-Seo) Bull. Korean Math. Soc. (2003), Vol 40, Pages 649–661
Conformal changes of $(G,L)$-structures in a Rizza structure (Lee, Il-Yong) Far East J. Math. Sci. (FJMS) (2001), Vol 3, Pages 825–838
On special Finsler spaces with common geodesics (Park, Ha-Yong) Commun. Korean Math. Soc. (2000), Vol 15, Pages 331–338
Finsler metrics compatible with a special Riemannian structure (Park, Hong-Suh; Park, Ha-Yong) Commun. Korean Math. Soc. (2000), Vol 15, Pages 339–348
Homogeneous function and its application in a Finsler space (Choi, Eun-Seo) Commun. Korean Math. Soc. (1999), Vol 14, Pages 385–392
On a Finsler space with a special $(\alpha,\beta)$-metric (Lee, Il-Yong) Far East J. Math. Sci. (1997), Vol 5, Pages 261–272
On the Berwald connection of a Finsler space with a special $(\alpha,\beta)$-metric (Park, Hong-Suh; Park, Ha-Yong) Commun. Korean Math. Soc. (1997), Vol 12, Pages 355–364
On the projectively flat Finsler space with a special $(\alpha,\beta)$-metric Commun. Korean Math. Soc. (1996), Vol 11, Pages 407–413

이 페이지에서 제공하는 정보에 만족하십니까?